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Abstract

A new approach, based on the physical decoupling of the hyperbolic two-step model, is introduced to describe the
thermal behavior of a thin metal ®lm exposed to picoseconds thermal pulses. The approach is based on the
assumption that the metal ®lm thermal behavior occurs in two separate stages. In the ®rst stage, electron gas

transmits its energy to the solid lattice through electron±phonon coupling and other mechanisms of energy transport
are negligible. In the second stage, electron gas and solid lattice are in thermal equilibrium, the energy transfer
through electron±phonon coupling is negligible, and thermal di�usion dominates. The proposed approach eliminates

the coupling between the energy equations and the reduced di�erential equations are easier to handle. The proposed
approach applies to metal ®lms whenever the dimensionless parameter GL 2/Ke is much larger than one. 7 2000
Elsevier Science Ltd. All rights reserved.

1. Introduction

Energy transport during fast laser heating of solids
has become an active research area beginning with the
employment of short-pulse lasers in the fabrication of
microstructures, laser patterning, laser processing of

diamond ®lms from carbon ion implanted copper sub-
strates and laser surface hardening [1].
In applications involving high-rate heating induced

by a short-pulse laser, the typical response time is an
order of picoseconds [2,3] which is comparable to the
phonon±electron thermal relaxation time. In such

cases, thermal equilibrium between phonons and elec-
trons cannot be assumed and heat transfer in the elec-

tron gas and the metal lattice needs to be considered

separately. Models describing the non-equilibrium ther-
mal behavior in such cases are called the microscopic
two-step models. In the literature, there are two micro-

scopic two-step models. The ®rst one is the parabolic
two-step model which is pioneered by Anisimov et al.
[4] and advanced later by Fujimoto et al. [5]. The sec-
ond one is the hyperbolic two-step model introduced

by Qiu and Tien [3] based on the macroscopic averages
of the electric and heat currents carried by electrons in
the momentum space.

Laser heating of metals consists of two major
steps of energy transfer which occur simultaneously.
In the ®rst step electrons absorb most of the inci-

dent radiation energy and the excited electron gas
transmits its energy to the lattice through inelastic
electron±phonon scattering process. In the second

step, the incident radiation absorbed by the metal
®lm di�uses spatially within the ®lm mainly by the
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electron gas. For typical metals, depending on the
degree of electron±phonon coupling, it takes about

0.1 to 1 ps for electrons and lattice to reach ther-
mal equilibrium. When the laser pulse duration is
comparable with or less than this thermalization
time, electrons and lattice are not in thermal equili-

brium. Under these situations, both the parabolic
and hyperbolic two-step models need to be con-
sidered simultaneously.

It is di�cult to solve the coupled energy equations
in the microscopic hyperbolic two-step model even
after eliminating the coupling. The elimination of the

coupling yields a single equation containing higher-
order mixed derivatives in both time and space leading
to complications in the solution procedures. However,

in situations involving high electron±phonon coupling
and low electron thermal conductivity, a simpli®cation
of the generalized governing equations of the hyper-
bolic two-step model is possible. This can be done by

realizing that the thermal behaviour occurs in two sep-
arate steps. In the ®rst stage, which is very short, the
electron gas absorbs the incident radiation and trans-

mits its energy to the metal lattice. The incident radi-
ation raises the electron gas temperature, which in
turn, causes a sharp drop in its thermal conductivity as

reported for the case of most metals [6]. This implies

that the energy di�used by the electron gas may be
neglected compared to that transmitted to the solid lat-

tice during the ®rst stage. As a result, the ®rst stage is
described by the hyperbolic two-step model excluding
the di�usion term. The coupling between the energy
equations of the hyperbolic two-step model is easily

eliminated after dropping this di�usion. The reduced
energy equations may then be used to obtain the non-
equilibrium period, that is, the time required by both

the electron and the lattice to reach the local thermal
equilibrium. At the end of the ®rst stage, both electron
gas and solid lattice assume approximately the same

temperature. The second stage begins following the
nonequilibrium period. In this stage, the absorbed
energy starts to di�use within the thin ®lm. Since both

electron gas and solid lattice have the same tempera-
ture, the thermal behaviour of the thin ®lm is now
described by the hyperbolic macroscopic one-step
model which consists of one energy equation contain-

ing the di�usion term. The initial condition for this
model is obtained from the spatial electron or lattice
temperature distribution given at the end of the non-

equilibrium period.
The assumption that the mechanism of heat transfer

in the ®rst stage is controlled mainly by energy transfer

from the electron gas to metal lattice and without any

Nomenclature

C heat capacity, J/m3 K
C
-

propagation speed, m/s
g electron±phonon coupling factor, W/m3 K

G Green's function
h Planck constant, J s
KB Boltzmann constant, J/K

K thermal conductivity, W/m K
L ®lm thickness, m
ne electron number density per unit volume, 1/

m3

na atomic number density per unit volume, 1/
m3

q conduction heat ¯ux, W/m2

Q heat source, W/m3

Q0 heat source amplitude, J/m3

t time, s

t0 ®rst stage duration, s
t� time at which the energy of the laser beam

is released, s

T temperature, K
TD Debye temperature, K
TF Fermi temperature, K

Ti initial temperature of both lattice and elec-
tron gas, K

T0 electron and phonon temperature at the end
of the ®rst stage, K

vs speed of sound, m/s

x spatial coordinate, m
X dimensionless spatial coordinate, C

-
x/2a

Greek symbols
a thermal di�usivity, m2/s
d Dirac's delta function

DT(x ) di�erence in temperature, K
y dimensionless temperature (TÿT0(x ))/Q0/

(Ce+Cl)
nD Debye frequency, 1/s

t dimensionless time, C
- 2(tÿt0)/2a

�t relaxation time, s
�tF relaxation time evaluated at Fermi surface, s

Subscripts
a atom

e electron
i initial
l lattice

0 the end of the ®rst stage
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thermal di�usion by the electron gas is justi®ed by the
following reasons: systems of high electron±phonon

coupling factor have very small nonequilibrium
periods. During this short period, the electrons have
no opportunity to di�use energy within the metal ®lm.

The di�usion process requires a relatively much longer
period, and controls the thermal behaviour of the sec-
ond stage.

The objective of the present work is to introduce a
simpli®ed approach which describes the thermal beha-
viour of a thin ®lm exposed to picosecond thermal

pulses. It is assumed that the thermal behaviour of
these metal ®lms occurs in two successive stages. In the
®rst stage, the electron gas transmits its energy to the
solid lattice, and at the end of this stage, both electron

gas and solid lattice reach the state of thermal equi-
librium. In the second stage, the energy transfer
through electron±phonon coupling is negligible and

the thermal di�usion becomes important. The pro-
posed approach eliminates the coupling between the
energy equations of both solid lattice and electron gas,

and it is much easier to handle the reduced partial
di�erential equations.

2. Analysis

Consider applications involving ultrafast laser heat-

ing of metal ®lms. When the laser pulse duration is
much shorter than the electron±phonon thermal relax-
ation time, the hot electrons are not in local thermal
equilibrium with the lattice. Consequently, one

describes the thermal behavior of a metal in terms of
one energy equations for electrons, one energy
equation for phonons and a constitutive law which

relates the conduction heat ¯ux with the temperature
gradient in the electron gas. The coupling between the
electron gas and solid lattice occurs via the electron±

phonon interaction. The time evolution of the energies
is given by the hyperbolic two-step model, which is
proposed by Qiu and Tien [3], as follows:

Cl�Tl�@Tl

@ t
� g�Te ÿ Tl� �1�

Ce�Te�@Te

@ t
� ÿrqÿ g�Te ÿ Tl� �Q �2�

�tF
@q

@ t
� KerTe � q � 0 �3�

where �tF is the relaxation time evaluated at Fermi sur-

face [1,7] and g is the coupling factor which character-
izes the energy exchange between phonons and
electrons and is given as [1]:

g � p4�nevskB�2
Ke

, vs � kB

2ph
�6p2na�ÿ1=3TD �4�

where ne denotes the electron number density, vs the
speed of sound, kB the Boltzmann constant, Ke the
electron thermal conductivity, na the phonon density, h

the Planck constant and TD the Debye temperature.
The coupling factor elative to electron di�usion is
dimensionless and explains

gL2

Ke

0 g�Te ÿ Tl�
Ke
�Te ÿ Tl�

L2

� electron±phonon energy exchange

net diffusion of electrons
�5�

Note also that, as dimensional groups, the upper limit

of sound propagation in a quantized solid is character-
ized by velocity

vs0nDn
ÿ1=3
a �6�

where nD being the Debye frequency. This velocity can

be rearranged in terms of the quantized energy, corre-
sponding to the Debye temperature,

hnD � kBTD, �7�
to give

vs0TD
kB

h
nÿ1=3a �8�

which provides a dimensional interpretation of the

sound velocity given in Eq. (4). Further note that, Eq.
(5) rearranged in terms of Eq. (4) gives

gL2

Ke

0p4
�
nevskBL

Ke

�2

, �9�

where, for a given temperature, the ratio

nevskBT

KeT

L

0electron energy flow

electron diffusion
� Pe �10�

denotes a Peclet number which is a well-known dimen-
sionless number in the phenomenological thermal
science literature. In terms of this number, Eq. (9) may

be interpreted as�
gL2

Ke

�1=2

0Pe �11�

Elimination of the coupling among Eqs. (1)±(3) yields
an equation with mixed derivatives. The high-order

terms and mixed derivatives resulting from this elimin-
ation lead to solution di�culties. However, in some
cases, the coupling between the two energy equations
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may be eliminated without these di�culties. These
cases involve very large coupling and very short pulse

duration.
A simpli®ed solution procedure is presented here for

elimination of the coupling amount Eqs. (1)±(3). This

is done by recognizing the fact that the thermal beha-
vior of the thin metal ®lm occurs in two separate
stages. In the ®rst stage, which has very short dur-

ation, electron gas absorbs the incident laser radiation
and transmits its energy to the solid lattice. The inci-
dent radiation raises the temperatures of the electron

gas, which in turn causes a drop in its thermal conduc-
tivity Ke. As an example, it is reported [6] that the elec-
tron gas thermal conductivity for highly pure copper
drops from 2� 104 W/m K at T=10 K to 5� 102 W/

m K at T = 1000 K. Also, a very short thermal pulse
leads to a very short period for the ®rst stage. During
this stage, energy di�usion in electron gas and solid

lattice is negligible. Eqs. (1) and (2) are then reduced
to

Cl�Tl�@Tl

@ t
� g�Te ÿ Tl� �12�

Ce�Te�@Te

@ t
� ÿg�Te ÿ Tl� �Q �13�

which are valid for 0R tR t0, where t0 is the period of
the ®rst stage. Note that the di�usion becomes negli-

gible whenever the ratio of exchanged energy through
electron±phonon coupling to di�used energy through
conduction in electron gas is much larger than 1, that
is,

gL2

Ke

>> 1

Table 1 shows this criterion, at room temperature, for
di�erent metal ®lms of thickness 1� 10ÿ6 m [1].
To describe the thermal behavior during the ®rst

stage, combine Eqs. (12) and (13) to yield

Cl�Tl�@Tl

@ t
� Ce�Te�@Te

@ t
� Q �14�

subject to the initial conditions

Te�0, x� � Tl�0, x� � Ti

At the end of the ®rst stage t0, it is assumed that the

di�erence between the electron gas temperature (Te(t0,
x ) and solid lattice temperature Tl(t0, x ) is a small
di�erence DT(x ), where

DT�x� � Te�t0, x� ÿ Tl�t0, x�

with (DT/Te)<<1 and (D/Tl)<<1. Integration of Eq. (14)
over the ®rst stage period yields

�Te�t0, x�ÿDT�x�

Ti

Cl dTl �
�Te�t0, x�

Ti

Ce dTe �
�t0
0

Q dt �15�

A substitute for Tl from Eq. (13) into (14), yields

@

@ t

�
Ce

g

@Te

@ t

�
�
�
1� Ce

Cl

�
@Te

@ t
� @

@ t

�
Q

g

�
� Q

Cl

�16�

Eqs. (15) and (16) need to be solved at each spatial lo-

cation x to obtain the ®rst stage period t0 and the tem-
perature distribution T(t0, x )=T0=Te(t0, x ) at the end
of the ®rst stage. Note that each spatial location has

di�erent t0, and one has to select the largest t0 in order
to secure the state of thermal equilibrium between the
electron gas and the solid lattice at each spatial lo-

cation of the ®lm. It is assumed that second stage will
be activated when the temperature di�erence between
the lattice and the electron is very small, but not zero.
Waiting for the lattice to attain the exact temperature

of the electron gas, that is DT = 0, increases the dur-
ation of the ®rst stage period because the energy
exchange between electron and lattice becomes very

slow at the end of the ®rst stage due to the decrease in
the temperature di�erence between them. As a result,
thermal di�usion within the ®lm, which is assumed to

be absent during the ®rst stage, may be activated and
this violates the basic assumption that controls the
thermal behavior of the ®rst stage.
For constant thermal properties Ce, Cl and g, Eq.

(16) is solved as

Table 1

Pb Ag Cu Au

Ke (W mÿ1 Kÿ1) 35 419 386 315

g (W mÿ3 Kÿ1) 12.4� 1016 2.8� 1016 4.8� 1016 2.8� 1016

gL 2/Ke 3542 66 124 88
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Te�t, x� � c1 � c2 eÿLt �
�
1

L

 
_Q

Ce

� Qg

ClCe

!
dt

ÿ eÿLt
�
1

L

 
_Q

Ce

� Qg

ClCe

!
eLt dt

�17�

where c1 and c2 are obtained using the following initial
conditions

Te�0, x� � Ti,
@Te

@ t
�0, x� � 0

and L=( g/Ce)[1+(Ce/Cl)]. Expression for Tl(t, x ) is

obtained directly from Eq. (13), with

@Te

@ t
�t, x� � ÿLc2 eÿLt � eÿLt

�  _Q

Ce

� Qg

ClCe

!
eLt dt

Also, Eq. (15) is integrated to yield

Te�t0, x� � T0�x� � Ti �

�
Q dt

Ce � Cl

� Cl

Cl � Ce

DT�x� �18�

It is worth mentioning here that the drop in the tem-

perature of the electron gas, which occurs at the end
of the ®rst stage, causes an increase in the electron gas
thermal conductivity. As a result, the thermal behavior
of the second stage is activated. The governing

equation which describes the thermal behavior of the
thin ®lm during the second stage is the classical hyper-
bolic energy equation replacing Eqs. (1), (2) and (3),

rc
@T

@ t
� ÿ @q

@x
�19�

�t
@q

@ t
� K

@q

@x
� q � 0 �20�

Note that the heating source term does not appear in
Eq. (19) because the duration of the incident laser radi-
ation is less than t0. Eqs. (19) and (20) are combined

to yield in one dimensional form,

1

�C
2

@ 2T

@ t2
� 1

a
@T

@ t
� @ 2T

@x 2
�21�

where �C
2 � �a=�t�: The initial conditions for Eq. (21)

are obtained from the temperature distribution T(t0,
x )=T0(x ) and its derivative [@T(t0, x )/@t ]=[@T0(x )/@t ]
at the end of the ®rst stage. However, at the end of the

®rst stage, Te(t0, x ) 1 Te(t0, x ) and Q = 0, and as a
result of Eqs. (12) and (13),

@T�t0, x�
@ t

� @T0�x�
@ t

� @Te�t0, x�
@ t

� @Tl�t0, x�
@ t

� 0

The assumption that the heating source vanishes at the

end of the ®rst stage is an important condition since it
is impossible for Tl to reach Te during the evolving of

the heating source.
We now proceed to an example illustrating the

simple approach developed in this study.

3. Illustrative example

Consider a very short laser pulse on a pure metal
®lm of thickness L having a high coupling factor g.
The metal ®lm is analyzed on the basis of a one-

dimensional model since, in a very short time, the
beam diameter is typically much larger than the pen-
etration depth of di�usion. Neglecting the temperature

dependence of thermal properties, assuming the inci-
dent radiation to be totally absorbed by the electron
gas and neglecting thermal di�usion within the solid

lattice, the governing equations are Eqs. (1)±(3) with
constant thermal properties ce, Cl, g and Ke. The
source term that appears in these equations may be ap-

proximated as

Q�t, x� � Q0�x�d�tÿ t�� �22�
where d(tÿt�) is the Dirac's delta function which

assumes that the incident laser beam evolves all of its
energy at time t� and Q0(x ) represents the spatial vari-
ation in the heating source which is rewritten as

Q0�x� � Q0f �x� �23�
where f(x ) represents any spatial variation in the heat-
ing source term. Let f(x ) be expanded in terms of

Fourier cosine half range expansion, as

f �x� � a0 �
Xn�1
n�1

an cos
npx
L

�24�

where

a0 � 1

L

�L
0

f �x�dx, an � 2

L

�L
0

f �x� cos
npx
L

dx

Insert the speci®ed heating source, given by Eq. (22),
into Eqs. (17) and (18), and carry out the required in-
tegrations, which yields

Te�t0, x� � T0�x� � Ti �Q0f �x��B1 � B2 eÿL�tÿt
���, for

t > t�

Te�t0, x� � T0�x� � 0, for t < t� �25�
where
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B1 � 1

Cl � Ce

, B2 � Cl

Ce�Cl � Ce

Te�t0, x� � T0�x� � Ti � Q0f

Cl � Ce

� Cl

Cl � Ce

DT�x� �26�

The duration of the ®rst stage t0 is found by equating
Eq. (25) to Eq. (26) and solving for t=t0, to yield

t0 � t� ÿ 1

L
ln

�
CeDT�x�

Q0f

�
�27�

During the ®rst stage, thermal di�usion is absent, and

as a result, one may assume that the temperature
di�erence DT(x ) has the same spatial distribution as
the spatial distribution of the heating source. This

implies that

DT�x� � f �x�DT
and Eq. (27) is reduced to

t0 � t� ÿ 1

L
ln

�
CeDT
Q0

�
Expression for Tl(t, x ) is obtained directly from Eq.
(13), with

@Te

@ t
�t, x� � ÿQ0 f �x�B2L eÿL�tÿt

��, for t > t�

@Te

@ t
�t, x� � 0, for t < t�

Also, the governing equations describing the thermal
behavior of the thin ®lm during the second stage and
are given by Eq. (21) with the following initial and
boundary conditions

T�t0, x� � T0�x�, @T

@ t
�t0, x� � 0

@T

@x
�t, 0� � @T

@x
�t, L� � 0 �28�

Now, using the following dimensionless parameters,

y � Tÿ T0�x�
Q0

Ce � Cl

, t �
�C
2�tÿ t0�
2a

, X �
�Cx

2a

Eqs. (21) and (28) are reduced to

@ 2y
@t2
� 2

@y
@t
� @ 2y
@X 2

� f 00�X � �29�

y�0, X � � 0,
@y
@t
�0, X � � 0

@y
@X
�t, 0� � @y

@X
�t, Xl� � 0 �30�

where f 0(X )=ÿSn=1
n = 1an cos gnX, and gn=2npa/LC-.

The boundary conditions in (30) are obtained as a
result of the fact that f '(0)=f '(Xl)=0. The analytical
solution to Eqs. (29) and (30) is expressed in terms of

Green's function (see, for example, Ozisik [8])

y�t,X � �
�1
X 0�0

�t
t��0

G�X, t j X 0, t�� f 00�X 0 �dt� dX 0 �31�

Here G(X, tvX ', t�) is the appropriate Green's function

for the solution of governing Eq. (29) and its initial
and boundary conditions with the source term replaced
by the unit impulse function d(tÿt�)d(XÿX '). In terms
of the Green function, the ®lm temperature given by

Eq. (29) satis®es

@ 2G

@t2
� 2

@G

@t
ÿ @ 2G

@X 2
� d�tÿ t��d�Xÿ X 0 � �32�

Subject to the following initial and boundary con-
ditions:

@G

@X
� 0, X � 0

@G

@X
� 0, X � Xl

G � 0, t < t�

@G

@t
� 0, t < t� �33�

The initial conditions are based on the causality prin-

ciple, which states that there can be no e�ect experi-
enced at times prior to the cause. The ®nite integral
transforms are used to solve systems (32) and (33).
Consider the integral transform and inversion pair

de®ned as (see, for example, Ozisik [8]):

�Gm�t� �
�Xl

X 0�0
G�X, t j X 0, t�� cos�lmX �dX �34�

G�X, t j X 0, t�� �
X1
m�0

�Gm�t�
N�lm� cos�lmX � �35�

where N(lm) is the normalization integral given by

N�lm� � Xl for m � 0, and N�lm� � Xl

2
for

m � 1, 2, 3, . . .

�36�

and lms are the eigenvalues by
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lm � mp
Xl

�37�

The transform of Eq. (32) satis®es

d2 �Gm�t�
dt2

� 2
d �Gm�t�

dt
� l2m �Gm�t�

� cos�lmX 0 �d�tÿ t�� �38�

subject to

�Gm�t� � 0, t < t�

d �Gm�t�
dt

� 0, t < t� �39�

By a somewhat lengthy but straightforward manipu-
lation, the solution to the system of Eqs. (38) and (39)
leads to

�Gm�t� � cos�lmX 0 �
bm

eÿ�tÿt
�� sin�bm�tÿ t���,

t > t�
�40�

where bm �
��������������
l2m ÿ 1

q
: The inversion formula given by

Eq. (35) readily gives the Green function as

G�X, t j X 0, t�� � 1

Xl

eÿ�tÿt
�� sinh�tÿ t�� �

X1
m�1

2 cos�lmX 0 �
bmXl

eÿ�tÿt
�� sin�bm�tÿ t��� cos�lmX �, t > t�

�41�

In terms of this solution, Eq. (31) yields

y�t, X � � 1

Xl

�1
X 0�0

�t
t��0

eÿ�tÿt
�� sinh�tÿ t�� f 00�X 0 �dt� dX 0

�
X1
m�1

2 cos�lmX 0 �
bmXl

eÿ�tÿt
�� sin�bm�tÿ t��� cos�lmX � f 00�X 0 �dt� dX 0

�42�

The ®rst term on the RHS of Eq. (42) represents the
steady-state part of the solution remaining after the

transients have died out. Any energy released within
any insulated region will merely distribute evenly over
the entire region after su�cient time. The temperature

distribution is directly available by inserting Eq. (24)
into the general solution (42). After performing indi-
cated operations

y�t,X � � ÿ 1

Xl

�
ÿ 1

4
� t

2
� 1

4
eÿ2t

�Xn�1
n�1

an
gn

sin gnXl

ÿ
X1
m�1

2

Xl

"
1

1� b2m
ÿ 1

bm�1� b2m�
eÿt
ÿ

sin bmt� bm cos bmt
�#

cos�lmX �
(X1

n�1

an
2

�
sin�lm ÿ gn�Xl

lm ÿ gn
� sin�lm � gn�Xl

lm � gn

�)
�43�

A sample of the results is presented in Fig. 1 for a thin metal

®lm of lead exposed to a laser pulse, as in Eqs. (22) and (23),
with f(x )=1 for 0 < x < (L/2) and f(x )=0 for (L/2) < x <
L. The results are obtained using the following values for

di�erent parameters:

L � 5� 10ÿ6 m, g � 12:4� 1016 W=m3 K, Ke � 35W=mK,

Ti � 300K,

Ce � 2:1� 104 J=m3 K, Cl � 1:5� 106 J=m3 K,

Q0 � 1� 1010 J=m3,

�t � �tF � 10ps

4. Concluding remarks

A simpli®ed approach is introduced to describe the

thermal behavior of a thin ®lm exposed to a pico-
second duration thermal pulse. It is assumed that the

Fig. 1. Transient electron and lattice temperatures variation at

the surface of an insulated thin lead ®lm.
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®lm thermal behavior occurs in two separate stages. In
the ®rst stage, electron gas transmits its energy to the

solid lattice, excluding any other mechanism of energy
transport. In the second stage, the energy transfer
through electron±phonon coupling is negligible and

the energy transfer by di�usion becomes dominant.
The dimensionless parameter which speci®es the val-
idity of the proposed model is found to be a sort of

Peclet number which is equal to the square root of
GL 2/Ke. This modi®ed Peclet number describes the
ratio of electron energy ¯ow to electron energy di�u-

sion. The proposed approach may be applied on metal
®lms having modi®ed Peclet number much larger than
one. This is believed to be true for thin ®lms having
very high coupling factor, very short thermal pulse

duration and relatively low or moderate thermal con-
ductivity.
Using the simpli®ed proposed model, the ®lm ther-

mal behavior is described by two ordinary di�erential
equations (one for the electron gas and the other for
the solid lattice) during the ®rst stage and by one clas-

sical hyperbolic energy equation during the second
stage.
Also, closed form expressions are derived for the

duration of the ®rst stage and the temperature distri-
bution at the end of the ®rst stage.
To demonstrate the validity of the proposed model,

an illustrative example describes the thermal behavior

of a metal ®lm exposed to an impulsive laser heating
source is given. The thermal behavior during the ®rst
stage is obtained directly from the general analysis and

that during the second stage is obtained using the
Green's function method. The results reveal the exist-

ence of two separate stages where the temperature
di�erence between electron and lattice vanishes at the
beginning of the second stage.
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